Roll No

MCADD - 302

M.C.A. (Dual Degree), III Semester

Examination, June 2016

Computer Oriented Numerical Methods

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B carry 2 marks, part C carry 3 marks, part D carry 7 marks.
- 1. a) Define algebraic and transcendental equation.
 - b) Let x = 0.0074869 find :
 - i) Absolute error,
 - ii) Relative error, of x is truncated to 3 decimal places.
- c) Apply false position method to solve the equation $3x \cos x 1 = 0$ correct to three decimal places. 3
 - d) Using Newton's Raphson method find the root of $x \log_{10} x = 1.2$ correct to five decimal places. 7

OR

Proof that Newton's Raphson method has Quadratic convergence.

- 2. a) Explain interpolation and extrapolation with example. 2
 - b) Find the cubic polynomial which takes the following values:

X	0	1	2	3	
f(x)	1	2	1	10	

PTO

2

MCADD-302

From the following data.

5.5

find x when y = 5 using iterative method.

d) Calculate the value of $\int_{0}^{\pi/2} \sin x \, dx$ by Simpson's

$$\frac{1}{3}$$
 and $\frac{3}{8}$ rule using 11 ordinates. 7

Compute the integral $\int_0^3 x^2 \cos dx$ using three point Gaussian Quadrature formula for

$$\mu_{-1} = -\sqrt{\frac{3}{5}}$$
 , $\mu_0 = 0$, $\mu_1 = \sqrt{\frac{3}{5}}$

$$\omega_{-1} = \frac{5}{9}$$
 , $\omega_0 = \frac{8}{9}$, $\omega_1 = \frac{5}{9}$

- 3. a) Establish whether the system 1.01x + 2y = 2.01; x + 2y = 2 is well conditioned or not.
 - b) Apply Gauss elimination method to solve the equations 2x+y+z = 10; 3x+2y+3z = 18; x+4y+9z = 16. 2
 - Using modified Euler's method find on approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ and y = 1, 3 when x = 0.
 - d) Find on approximate value of y when x = 0.1. If $\frac{dy}{dx} = x - y^2$ and y = 1 at x = 0 using Picard's method.

7

3

Using R - K method of fourth order find y (0.2) for the

equation
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$ take $h = 0.2$.

4. a) Find mean of Binomial distribution.

2

- b) Find the Probability that at-most 5 defective fuses will be found in a box of 200 fuses if experience shows that 2 percent of such fuses are defective.
- c) Calculate the mean and variance of rectangular distribution, whose frequency function is given by: 3

$$f(x) = \begin{cases} 1/(2h), & \text{If } 10-h < x < 10th \\ 0, & \text{Otherwise} \end{cases}$$

what is distribution function of random variate x; whose frequency distribution is f(x).

d) Five dice were thrown 192 times and the number of times 4, 5, or 6 were as follows:

No. of dice throwing	5	4	3	2	1	0
4, 5, 6						
f_0	6	46	70	48	20	2

Calculate χ^2 .

OR

A Bag contains 9 Black and 5 white balls, If 7 balls are with drawn, find the frequency function for the number of black balls obtained:

- i) If drawings are made with replacement,
- ii) If Drawings are made without replacement.

MCADD-302

- 5. a) What is composite or alternative Hypothesis. 2
 - b) Find the Student's t for the following variable values in a sample of eight -4, -2, -2, 0, 2, 2, 3, 3 taking the mean of the universe to be zero.
 - c) A coin is tossed 400 times and it turns up head 216 times, discuss whether the coin may be unbiased one.
 - d) Write a note on testing the significance of the difference between the means of two large samples. 7

OR

Show how you would use student's t-test and fisher z-test to decide whether the two sets of observation:

17, 27, 18, 25, 27, 29, 27, 23, 17

and 16, 18, 20, 16, 20, 17, 15, 21.

indicate sample drawn from the same universe