Roll No

MCADD-405

M.C.A. (Dual Degree/Integrated Course), IV Semester

Examination, May 2018

Computer Oriented Optimization Techniques

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

- ii) All questions carry equal marks.
- 1. a) Solve by graphically

Maximum
$$z = 45x_1 + 80 x_2$$

Subject to
$$5x_1 + 20x_2 \le 400$$

$$10x_1 + 15x_2 \le 450$$

and
$$x_1, x_2 \ge 0$$

- b) A dealer wishes to purchases a number of fans and sewing machines. He was only Rs. 5760 to invest and has space for almost 20 items. A fan costs him Rs. 360 and a sewing machine is Rs. 240. His expectations is that he can sell a fan at profit of Rs. 22 and a sewing machine at a profit of Rs. 18. Formulate the above as a linear programming problem to maximise the profit.
- 2. a) Solve by simplex method

$$Maximum z = 4x_1 + 10 x_2$$

Subject to
$$2x_1 + x_2 \le 10$$

$$2x_1 + 5x_2 \le 20$$

$$2x_1 + 3x_2 \le 18$$

and
$$x_1, x_2 \ge 0$$

b) There are 5 jobs each of which must go through to two machine A and B in order AB. Processing time are given below:

Job	1	2	3	4	5
Machine 1	5	1	9	3	10
Machine 2	2	6	7	8	4

3. a) Find an optimal solution to the transportation problem given below:

Destinations

	D_1	D_2	D_3	D_4	Supply
O_1	5	2	4	3	22
O_2	4	8	1	6	15
O_3	4	6	7	5	08
Demand	07	12	17	09	

- b) Discuss the mathematical formulation of an assignment problem.
- 4. a) Draw the network diagram for the project whose activities and their precedence relationship are as given below:

Activity	A	В	C	D	Е	F	G
Predecessor		43	1 17		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Activity	<u> </u>	2 m <u></u>	Α	Α	В	C	D,E

b) A small project is composed of seven activities whose time estimates are listed in the table as follow:

Activity	1-2	1-3	1-4	2-5	3-5	4-6	5-6
Optimistic				A. P.		A Description	75.
Time	1	1	2	1	2	2	3
Most likely							2
Time	1	4	2	1	5	5	6
Pessimistic		1 1			1		
Time	7	7	8	1	14	8	15

MCADD-405

- i) Draw the project network diagram.
- ii) Find the expected duration and variance of each activity.
- iii) What is the probability that the project will be completed within 19 weeks.
- 5. a) Discuss Kendall's notation for classification of queueing model.
 - b) In a service department managed by one server, on a average one customer arrives every 10 minutes. It has been found out that each customer requires 6 minutes to be served. Find out:
 - i) Average queue length
 - ii) Average time spent in the system
 - iii) The probability that there would be two customer in the queue.
- 6. a) Obtain the steady state solution of the queueing model $(M|M|I): (\infty|FCFS)$.
 - b) If for a period of 2 hours in a day (08-10 a.m.) trains arrive at the yard every 20 minutes but the service time continues to remain 36 minutes. Then calculate for this period.
 - i) The probability that yard is empty.
 - ii) Average queue length on the assumption that the line capacity of the yard is limited to 4 trains only.

MCADD-405