Roll No 08/04210054

MCADD-604

M.C.A. (Integrated), VI Semester

Examination, May 2024

Theory of Computation

Time: Three Hours

Maximum Marks: 70

- Note: i) Attempt any five questions.
 - ii) All questions carry equal marks.
- a) Describe the extended transition function of a NFA.
 Construct a NFA accepting the language over {a, b} *
 with each strings containing three consecutive b's. Show
 by extended function that it accepts abbb.
 - b) Construct a PDA that accepts the strings of language $L = \{wwR \mid w \text{ is in } \{a, b\} *\}.$
- 2. a) Define the term immediate left recursion. How can you convert a grammar with immediate left recursion into equivalent grammar without left recursion? Remove left recursion from the following grammar.

$$S \rightarrow S_1 S$$

 $S_1 \rightarrow S_1 + T \mid T$
 $T \rightarrow T^*F \mid F$

 $F \rightarrow (S_1) | a$

b) Describe multi tape Turing machine. Show that multi-tape Turing machine and one tape Turing machines are equivalent.

- 3. a) Explain, how can you encode a Turing machine into universal language?
 - b) Construct FA recognizing the languages described by following regular expressions.
 - i) (10*+01*)11*
 - ii) (0+1) *(01+1000)0*
- 4. a) Convert the following NFA-s into equivalent NFA without s?

- b) What do you mean by a CFG in CNF? What are the criteria to be a CFG in CNF? Explain.
- 5. a) Define the term Regular Grammar. What is the relation of Regular Grammar with other grammars? Explain.
 - b) How can you represent a finite Automata? Explain.
- 6. a) What do you mean by tractable and intractable problems? Is intractable problems are solvable by Turing machine?
 - b) Explain about sub-set construction method to convert a NFA into equivalent DFA with suitable example.

7. a) Convert the following grammar into Chomsky Normal Form.

 $S \rightarrow ASB|\epsilon$

 $A \rightarrow aAS|bAS|a$

 $B \rightarrow SbS|A|CS|bb$

- b) State and prove the pumping lemma for regular language. Explain about its application.
- 8. Write short notes on (Any two):
 - a) Solvable vs Unsolvable problems
 - b) CNF Satisfiability
 - c) Recursive and Recursively Enumerable Languages

dera